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The Effects of Viscoelasticity in the 
Peeling of Polymeric Films 

M. J. LOUKIS and N. ARAVAS 

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 
Philadelphia, PA 19104, U.S.A. 

(Received November 5 ,  1990; in final form March 30, 1991) 

A method to compute the interfacial fracture energy of a polymer film bonded to a rigid substrate, using 
the measured quantities of a peel test, is presented. The formulation is general and will accept any 
polymer which can be modeled as a linear viscoelastic material. The method is used to analyze the 
peeling of a polyimide film and a relationship between the fracture energy, the peel force, the speed of 
peeling and the thickness of the film is derived. 

KEY WORDS Interfacial fracture energy; work of adhesion; polymer peeling; peel test; peel force; 
peel speed; film thickness; rigid substrate. 

1. INTRODUCTION 

The use of polymeric films by the microelectronics industry today continues to 
increase. These films are often bonded onto ceramic substrates and the interfacial 
strength of the bond is a very important design parameter. A mechanical test that 
is commonly used for the determination of the interfacial fracture energy is the so- 
called peel test, in which a film is peeled from a substrate. If the film deforms 
elastically during the test, then the peel force is a direct measure of the interfacial 
fracture energy; when the film deforms inelastically, however, the determination of 
the fracture energy is not as straightforward and peel test data must be used with 
great care. 

There have been many elastic analyses of the peel test.'-8 In most of these refer- 
ences, beginning with Spies' in 1953, the unattached part of the film is represented 
as an elastica while the attached film is modeled as an elastic beam on an elastic 
foundation. Meanwhile, there have been relatively few viscoelastic analyses to date. 
Changg analyzed the peeling of an adhesive in terms of an elastic beam on a visco- 
elastic foundation and considered only the bonded portion of the film. KendallIo 
considered the peeling of a viscoelastic film from a rigid foundation and presented 
a very approximate solution to the problem. More recently, Aravas et al. ' I  presented 
a general solution for the peeling of a standard three-parameter viscoelastic film 
from a rigid substrate. 
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8 M. J. LOUKIS AND N. ARAVAS 

A theoretical analysis to interpret peel test data of a polymer film is presented in 
this paper. The film is modeled as a linear viscoelastic material which is peeled away 
from a rigid substrate. A general methodology for the calculation of the interfacial 
fracture energy from the test parameters is given. The problem reduces to the solu- 
tion of an integro-differential equation for the curvature of the film. Once the steady 
state distribution of curvature has been found, the corresponding viscous dissipation 
is easily determined, and the interfacial fracture energy is calculated by means of 
an energy balance. 

2. GENERAL FORMULATION 

2.1 Energy Balance 

A schematic representation of the peel test is shown in Figure 1. A clear and concise 
way of determining the interfacial fracture energy of a bond in a bi-material system 
is through the use of an energy balance. The central feature in this approach is that 
it enables one to relate the global energy changes of the deforming film as a whole 
to the focal energy requirement necessary to break the interfacial bonds and sustain 
crack growth or peeling. In this paper we will describe the mechanical behavior of 
the film in terms of a linear viscoelastic model. 

FIGURE 1 Schematic representation of the peel test. 
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VISCOELASTICITY EFFECTS IN PEELING 9 

If we consider an incremental crack advance during peeling, then the external 
work done by the peel force is balanced by the elastic energy stored in the film plus 
the viscous energy dissipated in the film while the remainder is expended in terms 
of the separation work required to break the interfacial bonds and create a new 
fracture surface. For steady state peeling, when the deformed shape of film remains 
the same as peeling proceeds, the energy balance can be written as 

(1 - C O S ~ )  Fdl = dWe + d W  + wydl, (2.1.1) 

where F is the peel force, + is the peel angle (see Fig. 2), We is the elastic strain 
energy of the system, w" is the viscous energy dissipation, y is the adhesive fracture 
energy, w is the width of the film and dl is the virtual crack advance. Equation 
(2.1.1) can also be written as 

y = (1 - COS4)P - +v - x, (2.1.2) 

where P =  Flw is the peel force per unit width, 

1 d W  qJ =-- 
w d l '  (2.1.3) 

is the viscous energy dissipated per unit width of the film per unit crack advance 
and 

1 d W  x = w 7  7 (2.1.4) 

P 

FIGURE 2 Schematic diagram of peeling. 
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10 M. J .  LOUKIS AND N. ARAVAS 

is the elastic energy stored in the film per unit width of the film per unit crack 
advance. 

During steady state peeling the shape of the deforming film remains constant and 
hence dW' is due solely to the extension of the film. In most cases, the axial straining 
of the film is small compared with that due to bending; therefore, in the following, 
we assume that the film is inextensible so that x = 0. Equation (2.1.2) now reduces 
to 

y = ( l  -cos+) P - J I " .  (2.1.5) 

The above equation shows very clearly that to compute the interfacial fracture 
energy y, in addition to determining the peel force P from experiment, one must 
also compute JIv from an appropriate analytical or numerical technique. In the anal- 
ysis which follows it will become apparent that once the steady state profile (or 
shape) of the unattached film has been obtained, the computation of the viscous 
energy dissipation JIv will be a straightforward exercise. 

2.2 Governing Equations 

The equilibrium equations of a slender beam undergoing finite deformation are 

and 

dT - - K(s)N(s) = O ,  ds 

dN 
ds - + K(s)T(s) = 0, 

T + N ( s ) = O ,  

(2.2.1) 

(2.2.2) 

(2.2.3) 

where T and N are the axial and shear forces of the beam, K = d8/ds is the curvature 
of the middle surface of the beam, tan 8 is the slope of the middle surface of the 
beam, M is the bending moment, and s is the arc length along the deforming film. 
Steady state peeling is assumed in the following. 

Global equilibrium requires that 

T(s) = P w  cos(+ - 8(s)) and N(s) = P w  sin(+ - 0(s)). (2.2.4) 
In the above equation tan 8 = dj/&,  where i - j  is a Cartesian coordinate system that 
translates with the moving crack tip, as shown in Figure 2. For definiteness, we also 
let s=O at the crack tip. The equilibrium equations (2.2.1) and (2.2.2) are now 
identically satisfied while the remaining moment equation (2.2.3) becomes 

(2.2.5) 

A typical cross-section of the deforming film subject to a pure bending moment 
is shown in Figure 3. The sign convention and coordinate axes are as indicated such 
that a positive moment corresponds to a positive curvature. The width w is always 
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VISCOELASTICITY EFFECTS IN PEELING 11 
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12 M. J .  LOUKIS AND N. ARAVAS 

much larger than the thickness h and therefore plane strain assumptions are valid. 
If we assume that the film is inextensible and that plane sections remain plane and 
normal to the central axis, then the bending strain r at any point along the film will 
be given by 

E(S,Z) = - K(s)z.  (2.2.6) 

Here we assume that the deforming film experiences small strains and large 
rotations. 

In this paper we will use the integral form of the constitutive equation for a linear 
viscoelastic material (e.g. ,  see Findley et a1.l'). During steady state peeling, the 
bending stress in the film is given by 

dT, a(t,z)= E ( t - 7 ) -  a7 
-m i (2.2.7) 

where u is the stress, E is the viscoelastic stress relaxation modulus, t is the current 
time and T is the time history from initial loading ('T= -m) to the present ( ' ~ = t ) .  
During steady state peeling of an inextensible film 

s( t )  =so+ vt, (2.2.8) 

will describe the distance, s, a representative material point will travel along the arc 
length of the film in time t from its original position of so at t = 0. This same material 
point will travel a shorter distance 

t ( 7 )  =So + V'T (2.2.9) 

along the film in time 'T. 

Substituting the time dependence of a material particle in terms of its spatial 
dependence we can, through the use of (2.2.9), write the constitutive equation as 

(2.2.10) 

and by substituting for the strain in terms of the curvature, with (2.2.6), we find 
that 

(2.2.11) 

Finally, since the bending stress is related to the moment by 

M ( s )  = - w 7 za(s,z)dz, (2.2.12) 
- h12 

we may integrate equation (2.2.11) through the thickness, by using (2.2.12), to 
obtain 
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VISCOELASTICITY EFFECTS IN PEELING 

1 
12 where I= -wh3 is the moment of inertia of the cross section. 

In this paper, we consider the substrate to be rigid so that 

K=O for s<O, 

and 

KZO for s20. 

where s = O  at the crack tip. Equation (2.2.13) can now be written as 

13 

(2.2.13) 

(2.2.14) 

(2.2.15) 

(2.2.16) 

which is the moment-curvature relation for the unattached part of the film. 

using K = d0/ds we arrive at the following integro-differential equation 
Finally, substituting (2.2.16) into the moment equilibrium equation (2.2.5) and 

1 E' - - +- S - (  d20 sin (4 - 0(s)) + - d20 Pw 
-+- ds2 E(0)Z E(0)v (z) 2 1 0  E(& 1 " (F) @ dS=07  

U 
(2.2.17) 

where prime denotes differentiation with respect to the corresponding argument, 
and the notation Alo is used to indicate the value of the function A(f) at f = 0. Equa- 
tion (2.2.17) is the governing equation for 0(s) and the corresponding boundary 
conditions are 

0 = 0 *  at s=O, (2.2.18) 

-=0 d0 at S = W ,  

ds 
(2.2.19) 

where BS is the base angle which the film makes with the substrate at the crack tip 
(see Fig. 2). 

Note that (2.2.17) is a general formulation for the peeling of any linear viscoelastic 
material, subject, of course, to the rigid base and inextensible film assumptions 
which have already been stated. Once 0(s) has been determined from the solution 
of (2.2.17), the profile 9 = j ( i )  of the unattached part of the film can be determined 
from the integration of 

d i  4 cos0(s) = - and sin0(s) = -. ds ds (2.2.20) 
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14 M. J .  LOUKIS AND N. ARAVAS 

2.3 Viscous Dissipation 

Once O(s) is determined, the curvature is K(s)  = dO/ds, and the corresponding 
moment distribution is given by (2.2.16). The viscous dissipation in the film per unit 
width w is given by 

M ( s ) - d s  d K  ] , (2.3.1) 
-I 7 0 ds 

where M(s) is determined by (2.2.16). Finally, the interfacial fracture energy is 
determined using equation (2.1.5). 

3. EXAMPLE: POLYlMlDE PI 6015 

3.1 Problem Formulation 

In this section we will solve the integro-differential equation (2.2.17) subject to 
the boundary conditions (2.2.18) and (2.2.19) for Polyimide PI 6015, which is an 
acetylene-terminated polyimide manufactured by the National Starch and Chemical 
Corporation. Here we assume that the polyimide film contains no residual stresses 
prior to ~eel ing. '~  The stress relaxation function for Polyimide PI 6015 has been 
determined experimentally" to be of the form 

El E(t)  = - 
( t  + to)"' (3.1.1) 

where El = 4.1 GPaasec", to = 1 sec and n = 0.022. Introducing the dimensionless 
quantities 

(3.1.2) 

we find that the governing integro-differential equation (2.2.17) can be written as 
I 

d 2 0  
( p l +  1)"" 7 1 0  -np I [p ( / - A ) +  l]"+l dX2 - dX=0.  

d 2 0  np dO 1 - + a sin(+ - O ( 1 ) )  - d12 
0 

(3.1.3) 

The corresponding boundary conditions are 

8=OB at l=O, (3.1.4) 

- = 0  dO at 1=a. 
dl (3.1.5) 

The a parameter contains the instantaneous elastic response in the film, whereas 
parameter p and the material property n represent the rate and stress relaxation 
effects, respectively, and are characteristic of the presence of viscosity in the film. 
Therefore, the first two terms in (3.1.3) are elastic terms while the third and fourth 
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VISCOELASTICITY EFFECTS IN PEELING 15 

terms introduce the viscous effects. The moment-curvature relation (2.2.16) now 
becomes 

where 

d0 
m(l) =m dl M ( s )  and k(l)  = - = hK(s) .  

Equation (2.3.1) for the viscous energy dissipation can be now written as 

(3.1.6) 

(3.1.7) 

(3.1.8) 

where kB is the dimensionless curvature at s = 0. 
The solution procedure for 4JV is described as follows. We solve the boundary 

value problem consisting of the integro-differential equation (3.1.3), subject to the 
boundary conditions (3.1.4) and (3.1.5), for e(l). The normalized curvature k( l )  and 
moment m(l) are then determined from equations (3.1.7) and (3.1.6), respectively. 
Finally, with m(l) and k(l)  determined at each point along the film, tJv can then be 
evaluated using (3.1.8). 

3.2 Numerical Method 

The integro-differential equation (3.1.3) is solved using a Galerkin- finite-element 
approach. The unknown function e(l) is approximated by 

N 

e ( ~  = 1 wj(l)ej, (3.2.1) 

where wj ( l )  are the interpolation functions, N is the number of interpolating func- 
tions and Oj  are constants to be determined. The corresponding weighted residual 
statement is 

j =  1 

where i =  1,2, ... ,N .  Equation (3.2.2) provides a set of N non-linear equations to 
be solved for 0,, j = 1,2,. . . ,N .  Two-node isoparametric elements with two Gauss 
integration points are used in the computations and the resulting non-linear alge- 
braic equations are solved using Newton’s method. Two degrees of freedom per 
node are used, and the interpolation of 8 within each element is defined by a third 
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16 M. J .  LOUKIS AND N. ARAVAS 

order polynomial in terms of the nodal values of 8 and dO/dl. A total of 160 elements 
are used in the computations. The first 101 nodes are uniformly spaced at a distance 
Af = 0.5 (or As = h / 2 )  apart, while the spacing of the remaining 60 nodes increases 
by 10 percent for each succeeding node to a total length of approximately 1 = 1700 
(or s =  1700h). Such a length is sufficient to model the region Oss<m, since the 
unknown function 8(s) is found to vary extremely slowly with s for values of s greater 
than about 60h. (See Figs. 4b and 5 below). 

3.3 Numerical Results 

In this section we present results for a peel angle of 4 = 90" and a base angle OB = 0". 
The calculated angle 8( l )  is plotted versus normalized arc length 1 in Fig. 4a, for 
a = 0.01 and different values of the viscous parameter p, namely for p = 0, 1 and 10. 
It is readily noted that the curves e(Z) for p#O do not vary significantly from the 
curve representing the elastic solution p = 0, since the stress relaxation exponent is 
relatively small for this material (n=0.022). Figure 4b gives the curve 8(l)  for 

90.0 

60.0 

30.0 

10 

0. 
0. 10.0 20.0 

1 
FIGURE 4a Peel angle 8 versus arc length 1 for a given a and different values of p. 
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VISCOELASTICITY EFFECTS IN PEELING 17 

100. 

80.0 

60.0 

20.0 

0. 

Q! = 0.01 
p=  10 

I I I 1 I I 
0. 20.0 40.0 60.0 

1 
FIGURE 4b Peel angle 8 versus arc length I for a given a and a given p. 

a = 0.01 and p = 10 and shows that when 1 = 60.0 then 8 approaches the peel angle 

The computed profile of the film is shown in Figure 5.  It should be noted that the 
profile shown in Fig. 5 is not to scale, since the coordinate axes are scaled differently. 
Figure 5 shows that the curvature in the film increases as the viscous parameter p 
increases. Intuitively we find this to be correct since, as the modulus of the film 
relaxes in time, the bending stiffness (i.e. E( t ) l )  diminishes as well. 

The moment-curvature history a material element experiences during steady state 
peeling is shown in Fig. 6. The straight line from A to B is indicative of the instanta- 
neous elastic response of the film at the crack tip s = 0, whereupon the curvature of 
the film instantaneously jumps from zero to kB, with a corresponding jump in the 
moment from zero to mB. The curve below this line reflects the unloading behavior 
along the arc length of the unattached part of the film. The arrows indicate the 
directions in which loading and unloading proceed. The viscous energy dissipation 
JIy as computed by equation (3.1.8), is proportional to the area of the hysteresis 
loop in the moment-curvature diagram of Fig. 6. 

+=w. 
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100. 

80.0 

60.0 

40.0 

- 
- 

- 

- 

- 

- 

- 

= 0.01 

20.0 

- 

- 

- 

0. 5.00 10.0 15.0 

k/h 
FIGURE 5 Profile of deformed film for a given a and different values of p. 

Figure 7 gives the dependence of the normalized viscous energy dissipation $ J P  
on the dimensionless parameters a and p, For the range of a and p values consid- 
ered, Figure 7 shows that the ratio $,, /P is less than 0.1. This relatively small value 
of $,,/P is a consequence of the weak viscoelastic nature of the polymer considered 
(n =0.022). It should be emphasized, however, that the value $,/P=O.l should not 
be considered as a “typical” value for polymer peeling. In fact, in most cases, values 
much higher than 0.1 should be expected. 

Furthermore, the $,,If‘ value calculated using the procedure outlined in Section 
2 should be viewed as a lower bound to the actual $,,/Pvalue, since the contribution 
of any axial strains to the energy dissipation is not included in our calculations. A 
discussion of the axial strain effects is given in the following section. 

It is interesting to note the effect of film thickness h on the energy dissipation $,,. 
The parameter a varies like - l / h  whereas p goes as -h; therefore, as the thickness 
of the film increases, a decreases, p increases, and as shown in Fig. 7, the ratio JI,,/P 
will increase as well. It is worth noting that the opposite effect is observed in metallic 
films, where the ratio $/I‘ decreases with increasing film thickness (Aravas ef al.”).  
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VISCOELASTICITY EFFECTS IN PEELING 19 

m 

15.0 

10.0 

5 .oo 

0. 
0. 0.050 0.100 0.150 

k 
FIGURE 6 Normalized moment in versus normalized curvature k for a given a and p. 

4. DISCUSSION AND CLOSURE 

A detailed.analysis of the mechanics of peeling of polymeric films has been 
presented. The primary aim of our work is to provide a theoretical basis for the 
proper calculation of the adhesive fracture energy y from peel test data. Our analysis 
shows that the peel force alone is not sufficient for the determination of y. Another 
important parameter which must be taken into account is the “base angle” OB, which 
depends on the properties of the film and the substrate, as well as on the adhesion 
strength itself. A method for the estimation of O B  in a peel test has been presented 
by Kim14 who modeled the attached part of the film as an elastic-plastic beam on 
an elastic (Winkler) foundation. A similar method could be used for a viscoelastic 
film. In such a model, however, the effects of the singular normal and shear stresses 
that develop along the interface in the region near the crack tip are neglected, and 
it is difficult to assess the accuracy of the calculated O B .  We propose, instead, that 
08 be measured during the peel test. When the peel force P and base angle BE are 
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20 M. J .  LOUKIS AND N. ARAVAS 

0.080 

0.060 

0.040 

0.020 

0. 

t / 0.1 

0. 2.00 4.00 6.00 8.00 10.0 

p = h/vto 
FIGURE 7 Normalized viscous dissipation $./P versus normalized viscous parameter p for different 
values of elastic parameter a. 

known, the fracture energy y can be calculated as follows. The energy dissipation 
JIv is determined first using Figure 7, and then fracture energy y is found using 
equation (2.1.5), i .e.,  

y = (1 - cos+)P - JI”. (4.1) 

In that sense, Figure 7 is equivalent to the “universal peel diagram” developed by 
Kim14 for metal films. 

Several limitations of the present methodology are discussed in the following. 
Polymer films deposited on substrates are usually under substantial tensile residual 
stresses prior to peeling. The effects of those residual stresses are not accounted for 
in our formulation. It should be noted, however, that Loukis and Aravas15 have 
recently shown that in metallic films, residual stresses smaller than 50% of the yield 
stress of the metal have a very small effect on the energy dissipation during a peel 
test. Therefore, as a first approximation, one could argue that in polymer films such 
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VISCOELASTICITY EFFECTS IN PEELING 21 

effects can also be ignored as long as the residual stress is smaller than, say, 50% 
of a representative “yield stress” in the polymer (as determined from a uniaxial 
test). 

Another assumption used in our formulation is that the film is inextensible. Such 
strains, however, may become important when the adhesion of the film is strong. 
In order to determine whether axial strains are indeed important we suggest the 
following simple procedure. An average axial stress in a peel test can be defined as 
a, = P / h .  Using the uniaxial stress-strain curve of the material (at an appropriate 
strain rate) one can then estimate the corresponding axial elastic strain. Further- 
more, using u, one can also estimate the corresponding creep strain during the test. 
If the axial strains are indeed smaller than the bending strains, as determined by 
our analysis, then y can be determined using Figure 7, together with equation (4.1) 
above. 

When the axial strains are of the same order as the bending strains, however, one 
needs to modify the kinematic assumption (2.2.6). The strain distribution on across- 
section along the film can be now written as 

E(S,Z) = - K(s)z  + e(s).  (4.2) 
..where E&) is the axial strain, which is an extra unknown to the problem. In such 
a case, the velocity of crack propagation vc is, in general, different from the speed 
of peeling vm, and it can be readily shown that 

Vrn vc=- 1 +€; ’ (4.3) 

where E: is the axial strain at the end of the unattached part of the film where the 
peel force is applied. Furthermore, the velocity of material points along the axis of 
the film varies with the local axial strain as 

(4.4) 

Equations (2.2.8) and (2.2.9) are then no longer valid and the governing equations 
consist of two coupled integro-differential equations for K ( s )  and E,(s) which need 
to be solved simultaneously. 

We conclude the paper by mentioning that our analysis provides a first step 
towards a sound understanding of polymer peeling. The effects of non-linear visco- 
elasticity, residual stress, as well as axial strains are definitely worth studying and 
will be addressed in detail in a future publication. 
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